Information Processing Models in Neural Systems

(3-0-0-3)

CMPE Degree: This course is Not Applicable for the CMPE degree.

EE Degree: This course is Not Applicable for the EE degree.

Lab Hours: 0 supervised lab hours and 0 unsupervised lab hours.

Technical Interest Group(s) / Course Type(s): Bioengineering

Course Coordinator: Christopher John Rozell

Prerequisites: ECE 2026 and (ECE 3075 or ECE 3077)

Catalog Description

Examines 'top-down' modeling approaches for sensorineural systems, where optimal computational principles used in engineering (e.g., information theory, Bayesian inference, control theory) explain observed information processing.

Course Outcomes

Not Applicable

Strategic Performance Indicators (SPIs)

Outcome 1 (Students will demonstrate expertise in a subfield of study chosen from the fields of electrical engineering or computer engineering):
1. Explain the opportunities and challenges of using core concepts in electrical and computer engineering to model aspects of brain function, such as information theory, probabilistic inference, and artificial neural networks.

Outcome 2 (Students will demonstrate the ability to identify and formulate advanced problems and apply knowledge of mathematics and science to solve those problems):
1. Analyze the statistics of natural images to identify structures potentially exploited by sensory systems.
2. Utilize concepts from electrical and computer engineering to develop a model of some aspect of brain function and execute an evaluation of that model via analysis or computer simulation.

Outcome 3 (Students will demonstrate the ability to utilize current knowledge, technology, or techniques within their chosen subfield):
1. Read research papers to identify and critique the use of concepts from electrical engineering to modeling brain function.

Topical Outline

1. Introduction and background
a. The types of modeling: Descriptive, mechanistic, and functional/interpretive
b. Review of mathematical preliminaries: linear systems, probability and statistics
c. Basic neurophysiology: Cell physiology, electrical potentials, and synaptic transmission
d. Basic system structure and function: Early visual pathway, auditory periphery, and characterization of individual cell responses
e. Natural sensory statistics and system efficiency
2. Optimal inference and decision theory
a. Optimal statistical inference and decision theory
b. Inference in perception and cue integration
c. Motion illusions and conditional perception as Bayesian inference
d. Optimal (sequential) decision making and evidence accumulation
e. Inference in neural codes incorporating sparsity
3. Dimensionality reduction
a. Manifold models of perception
b. Matrix factorization models of low-dimensional structure
c. Compressed sensing in learning and memory
d. Low-dimensional dynamics in neural populations
4. Information theory
a. The mathematical theory of information
b. Synaptic structure and function
c. Single unit responses in the visual pathway
d. Adaptive gain control maximizes information?
5. Feedback
a. Motor coordination
b. Predictive coding and attention
6. Hierarchical models and invariance
a. Building invariances in stages
b. Learning invariances with deep networks
7. Group project presentations